RC circuits

Initially one has $+Q_0$ and $-Q_0$ on the Capacitor plates. Thus, the initial Voltage on the Capacitor $V_0 = Q_0/C$. What do you think happens when the switch is closed?

\[\text{Discharging a capacitor} \]

Close the switch at $t=0$, then current i starts to flow.

At $t=0$, \[i_0 = \frac{V_0}{R} \]

Later \[i(t) = -\frac{dQ}{dt} \]

* Negative sign since Q is decreasing.
Discharging a capacitor

Voltage across C = Voltage across R

\[V_c = V_R \]

\[\frac{Q}{C} = iR = -\frac{dQ}{dt}R \]

\[\frac{dQ}{dt} = -\frac{1}{RC}Q \]

We now need to solve this differential equation.

Solving the differential equation:

\[\frac{dQ}{dt} = -\frac{1}{RC}Q \]

\[Q(t) = Q_0 e^{-t/RC} \]

Check solution by taking the derivative...

\[\frac{dQ}{dt} = Q_0 \left(-\frac{1}{RC} \right) e^{-t/RC} = -\frac{1}{RC}Q \]

Also $Q(t) = Q_0$ at $t=0$.

\[Q(t = 0) = Q_0 e^{-0/RC} = Q_0 \]
Exponential Decay

\[Q(t) = Q_0 e^{-t/RC} \]

After a time \(\tau = RC \), \(Q \) has dropped by \(e^{-1} = 1/e \).

After a time \(t = 2RC \), \(Q \) has dropped by \(e^{-2} = 1/e^2 \).

Thus \(\tau = RC \) is often called the time constant and has units [seconds].

Discharging a capacitor

\[\frac{dQ}{dt} = Q_0 \left(-\frac{1}{RC} \right) e^{-t/RC} = -\frac{1}{RC} Q \]

\[|i(t)| = \left| \frac{dQ}{dt} \right| = \left(\frac{Q_0}{RC} \right) e^{-t/RC} = i_0 e^{-t/RC} \]

Thus, the current also falls with the same exponential function.
Clicker Question

A capacitor with capacitance 0.1F in an RC circuit is initially charged up to an initial voltage of $V_o = 10V$ and is then discharged through an $R=10\Omega$ resistor as shown. The switch is closed at time $t=0$. Immediately after the switch is closed, the initial current is $I_o = V_o / R = 10V / 10\Omega$.

What is the current I through the resistor at time $t=2.0$ s?

A) 1A
B) 0.5A
C) $1/e$ A = 0.37A
D) $1/e^2$ A = 0.14A
E) None of these.

Answer: $1/e^2$ A = 0.14A.

The time constant for this circuit is $RC = (10\Omega)(0.10F) = 1.0$ sec. So at time $t=2.0$ sec, two time constants have passed. After one time constant, the voltage, charge, and current have all decreased by a factor of e. After two time constants, everything has fallen by e^2. The initial current is 1A. So after two time constants, the current is $1/e^2$ A = 0.135A.

Charging a capacitor

More complex RC circuit: Charging C with a battery.

Before switch closed $i=0$, and charge on capacitor $Q=0$.

Close switch at $t=0$.

Try Voltage loop rule.

\[+V_b + V_R + V_C = 0 \]
\[+V_b - iR - Q / C = 0 \]
Charging a capacitor

\[+V_b - iR - \frac{Q}{C} = 0 \]

\[+V_b - \frac{dQ}{dt} \frac{R}{C} = 0 \]

\[\frac{dQ}{dt} = + \frac{V_b}{R} - \frac{Q}{RC} \]

\[Q(t) = CV_b \left(1 - e^{-t/RC} \right) \]

- Although no charge actually passes between the capacitor plates, it acts just like a current is flowing through it.
- Uncharged capacitors act like a "short": \(V_c = Q/C = 0 \)
- Fully charged capacitors act like an "open circuit". Must have \(i_c = 0 \) eventually, otherwise \(Q \to \) infinity.
An RC circuit is shown below. Initially the switch is open and the capacitor has no charge. At time $t=0$, the switch is closed. What is the voltage across the capacitor immediately after the switch is closed ($time = 0$)?

A) Zero
B) 10 V
C) 5V
D) None of these.